Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biomedicines ; 11(4)2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2304405

ABSTRACT

For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (ß-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.

2.
Cells ; 10(2)2021 02 16.
Article in English | MEDLINE | ID: covidwho-1106076

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, afflicting ~10 million people worldwide. Although several genes linked to PD are currently identified, PD remains primarily an idiopathic disorder. Neuronal protein α-synuclein is a major player in disease progression of both genetic and idiopathic forms of PD. However, it cannot alone explain underlying pathological processes. Recent studies demonstrate that many other risk factors can accelerate or further worsen brain dysfunction in PD patients. Several PD models, including non-mammalian eukaryotic organisms, have been developed to identify and characterize these factors. This review discusses recent findings in three PD model organisms, i.e., yeast, Drosophila, and Caenorhabditis elegans, that opened new mechanisms and identified novel contributors to this disorder. These non-mammalian models share many conserved molecular pathways and cellular processes with humans. New players affecting PD pathogenesis include previously unknown genes/proteins, novel signaling pathways, and low molecular weight substances. These findings might respond to the urgent need to discover novel drug targets for PD treatment and new biomarkers for early diagnostics of this disease. Since the study of neurodegeneration using simple eukaryotic organisms brought a huge amount of information, we include only the most recent or the most important relevant data.


Subject(s)
Animals, Genetically Modified/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Animals , Animals, Genetically Modified/genetics , Caenorhabditis elegans/metabolism , Disease Models, Animal , Humans
SELECTION OF CITATIONS
SEARCH DETAIL